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Abstract. General necessary and sufficient conditions of the k-th order (where k > 0) for an
extremum of an arbitrary function defined on an arbitrary metric space are stated. Examples
illustrating the theory are described.
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1. Introduction

Let X be a metric space with the metric r and let us assume that a functional f is
]

defined on X and takes values from R 5 [2`, 1`]. Our aim is to describe k-th order
necessary and sufficient conditions for a maximum and a minimum of f on X. It
turns out that such conditions can be formulated in a very general form by means of
the k-th order rates of steepest descent and ascent introduced in the paper. Being
applied to specific spaces (normed spaces, for example) the obtained conditions
generate, among others, some well-known optimality conditions (see, e.g., [1–6]).

In Section 2 the first-order conditions are proved. In Section 3 the k-th order
conditions are described.

2. First-order optimality conditions

Let X be a metric space with the metric r and let us assume that a functional f is
]

defined on X and takes values from R 5 R < h1`, 2`j 5 [2`, 1`].
Put

dom f 5 hx [ X u f(x) [ R j

and assume that

dom f ± 5 . (2.1)

Let x [ dom f. Denote
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f( y) 2 f(x)↓ ]]]f (x) 5lim inf . (2.2)
y[X r(x, y)
y→x

If there exists no sequence hy j, such thatk

y [ X, y ± x;k , y → x ,k k k

↓then by definition f (x) 5 1`. Since x [ dom f, then the limit in (2.2) always exists
though it may be equal to 1` or 2`).

↓The quantity f (x) is called the rate of steepest descent of the function f at the
point x.

(2.2) implies the expansion

↓f( y) 5 f(x) 1 r(x, y)f (x) 1o(r(x, y)) ,]

where

o(r(x, y))]]]]lim inf 5 0 . (2.3)
y→x r(x, y)

Analogously, for x [ dom f one can define the quantity

f( y) 2 f(x)↑ ]]]f (x) 5lim sup . (2.4)
r(x, y)y[X

y→x

If there exists no sequence hy j, such thatk

y [ X, y ± x;k , y → x ,k k k

↑then by definition f (x) 5 2`. Since x [ dom f, then the limit in (2.4) always exists
though it may be equal to 1` or 2`).

(2.4) implies the expansion

↑ ]f( y) 5 f(x) 1 r(x, y)f (x) 1o(r(x, y)) ,

where
]o(r(x, y))
]]]lim sup 5 0 . (2.5)

r(x, y)y→x

↑The quantity f (x) is called the rate of steepest ascent of the function f at the point
x.

Put

f 5 inf f(x) , f * 5sup f(x) .
x[X* x[X

It follows from (2.1) that

f , 1` , f * . 2` .
*

If for some point x [ X it holds that f(x ) 5 f , then the point x is called a
* * * *
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minimum point (or a global minimum point, or a global minimizer) of the function f
on X. Of course, it may happen that such a point x doesn’t exist.

*Put

A 5 arg min f 5 hx [ X u f(x) 5 f j .
x[X* *

If

x [⁄ dom f , f(x ) 5 2` ,0 0

then

f 5 f(x ) 5 2` , x [ A .0 0* *
If for points x [ X and x [ X it turns out that1 2

f(x ) 5 2` , f(x ) 5 2` ,1 2

then we shall assume that

f(x ) 5 f(x ) 5 f .1 2 *
Analogously, if for some point x* [ X we have f(x*) 5 f *, then the point x* is

called a maximum point (or a global maximum point, or a global maximizer) of the
function f on X. Of course, it may happen that such a point x* doesn’t exist.

Put

A* 5 arg max f 5 hx [ X u f(x) 5 f *j .
x[X

If

x [⁄ dom f , f(x ) 5 1` ,0 0

then

f * 5 f(x ) 5 1` , x [ A* .0 0

If for points x , x [ X it turns out that1 2

f(x ) 5 1` , f(x ) 5 1` ,1 2

then we assume that f(x ) 5 f(x ) 5 f *.1 2

In other words, a point x [ X is a global minimum point of f on X, if
*

f(x < f(x) ;x [ X , (2.6)
*

and a point x* [ X is a global maximum point of f on X, if

f(x*) > f(x) ;x [ X . (2.7)

A point x [ X is called a strict global minimum point or a strict global minimizer
*of the function f on X, if

f(x ) , f(x) ;x [ X , x ± x . (2.8)
* *
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A point x* [ X is called a strict global maximum point or a strict global maximizer
of the function f on X, if

f(x*) . f(x) ;x [ X , x ± x* . (2.9)

A point x [ X is called a local minimum point or a local minimizer of f on X, if
*there exists a d . 0, such that

f(x ) < f(x) ;x [ X : r(x, x ) , d . (2.10)
* *

If d 5 1` then the point x is a global minimum point. A point x [ X is called a
* *strict local minimum point or a strict local minimizer if there exists a d . 0, such

that

f(x ) , f(x) ;x [ X : x ± x , r(x, x ) , d . (2.11)
* * *

A point x* [ X is called a local maximum point or a local maximizer of f on X, if
there exists a d . 0, such that

f(x*) > f(x) ;x [ X : r(x, x*) , d . (2.12)

If d 5 ` then the point x* is a global maximum point. A point x* [ X is called a
strict local maximum point or a strict local maximizer if there exists a d . 0, such
that

f(x*) . f(x) ;x [ X : x ± x*, r(x, x*) , d . (2.13)

] ] ]If for some point x [ X we have f(x) 5 1`, then by definition x is a global
] ]maximum point of the function f on X; and if f(x) 5 2`, then by definition x is a

global minimum point of f on X.

THEOREM 2.1. For a point x [ dom f to be a global or local minimizer of the
*function f on X it is necessary that

↓f (x ) > 0 . (2.14)
*

If
↓f (x ) . 0 , (2.15)

*
then the point x is a strict local minimizer of f on X.

*Proof. Necessity follows directly from the definition. Indeed, let x be a local or
*global minimizer. Then (2.10) holds, therefore

f(x) 2 f(x )↓ *]]]]f (x ) 5lim inf > 0 .
x[X r(x, x )*

x→x **

Sufficiency. Let condition (2.15) be satisfied at the point x . We have to show
*that a d . 0 exists such that (2.11) holds. Assume the contrary. Let us choose a

sequence hd j such that d ↓0. By assumption, the point x is not a strict localk k *minimizer, therefore there exists an x [ X, such thatk
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f(x ) < f(x ) , r(x , x ) < d .k k k* *
Hence,

f(x) 2 f(x ) f(x ) 2 f(x )k↓ * *]]]] ]]]]f (x ) 5lim inf <lim inf < 0 ,k
x[X r(x, x ) k→` r(x , x )kx→x * *p

which contradicts (2.15). The sufficiency is proved. h

THEOREM 2.2. For a point x* [ dom f to be a global or local maximizer of the
function f on X, it is necessary that

↑f (x*) < 0 . (2.16)

If
↑f (x*) , 0 . (2.17)

then the point x* is a strict local maximizer of f on X.
Proof is similar to that of Theorem 2.1. h

DEFINITION 2.1. A point x [ X, satisfying condition (2.14), is called an inf-
*stationary point of the function f on X. A point x* [ X, satisfying condition (2.16),

is called a sup-stationary point of f on X.

DEFINITION 2.2 A sequence hx j, such thatk

x [ X , f(x ) → f 5 inf f(x) ,k k
x[X*

is called a minimizing sequence (for the function f on X).
A sequence hx j, such thatk

x [ X , f(x ) → f * 5sup f(x) ,k k
x[X

is called a maximizing sequence (for the function f on X).

3. k-th order conditions

Let x [ dom f, k [ 0 : `. Put

f( y) 2 f(x)↓ ]]]f (x) 5lim inf . (3.1)k k
y[X r (x, y)
y→x

↓The quantity f (x) is called the k-th order rate of steepest descent.k

Analogously, for x [ dom f we define the quantity

f( y) 2 f(x)↑ ]]]f (x) 5lim sup . (3.2)k kr (x, y)y[X
y→x
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↑The quantity f (x), is called the k-th order rate of steepest ascent. It is clear, thatk

↑ ↓ ↑ ↑f (x) 5 f (x) , f (x) 5 f (x) .1 1

↓If f (x) [ R (i.e. it is finite), then (3.1) yields the expansionk

k ↓f( y) 5 f(x) 1 r (x, y)f (x) 1a(r(x, y)) , (3.3)]

where
]a(r(x, y))
]]]lim inf 5 0 . (3.4)ky→x r (x, y)

↓Analogously, if f (x) [ R, then (3.2) implies the expansionk

k ↑ ]f( y) 5 f(x) 1 r (x, y)f (x) 1a(r(x, y)) , (3.5)

where
]a(r(x, y))
]]]lim sup 5 0 . (3.6)k

y→x r (x, y)

The following conditions for an extremum hold.

THEOREM 3.1. For a point x [ dom f to be a global or local minimizer of the
*function f on X it is necessary that

↓f (x ) > 0;k [ 0 : ` . (3.7)k *
If for some k [ 0 : ` it turns out that

↓f (x ) . 0 , (3.8)k *
then x is a strict local minimizer of f on X.

*Proof is similar to that of Theorem 2.1. h

THEOREM 3.2. For a point x* [ dom f to be a global or local maximizer of the
function f on X it is necessary that

↑f (x*) < 0;k [ 0 : ` . (3.9)k

If for some k [ 0 : ` it turns out that

↑f (x*) , 0 , (3.10)k

then x* is a strict local maximizer of f on X.

Proof is similar to that of Theorem 2.2. h

DEFINITION 3.1. We say that a point x is an inf-stationary point of the k-th order0

of the function f, if
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↓f (x ) 5 0;i [ 0 : k .i 0

A function f is called lower semicontinuous at a point x , if0

lim inf f(x) 5 f(x ) .0x→x0

Clearly, if a function f is lower semicontinuous at a point x , then the point x is0 0

an inf-stationary point of the zero order.

DEFINITION 3.2. We say that a point x is a sup-stationary point of the k-th order0

of the function f, if
↑f (x ) 5 0;i [ 0 : k .i 0

A function f is called upper semicontinuous at a point x , if0

lim sup f(x) 5 f(x ) .0
x→x0

Clearly, if a function f is upper semicontinuous at a point x , then the point x is a0 0

sup-stationary point of the zero order.

REMARK 3.1. It is not difficult to see that the following property holds.
For a function f to be continuous at a point x , it is necessary and sufficient that0

↓ ↑f (x ) 5 f (x ) 5 0 .0 0 0 0

In other words, a function f is continuous at a point x if and only if it is both0

upper and lower semicontinuous at this point.

REMARK 3.2. Theorems 3.1 and 3.2 imply the following property: At any point
x [ dom f either

↓f (x) > 0;k [ 0 : ` ,k

or
↓f (x) < 0;k [ 0 : ` .k

↓If for some k [ 0 : ` we have f (x) . 0, then the point x is a strict local minimizer.k
↓If for some k [ 0 : ` it turns out that f (x) , 0, then the point x is not a localk

minimizer.
Analogously, at any point x [ dom f either

↑f (x) < 0;k [ 0 : ` ,k

or
↑f (x) > 0; [ 0 : ` .k

↑If for some k [ 0 : ` it turns out that f (x) , 0, then the point x is a strict localk

maximizer.
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↑If for some k [ 0 : ` we have f (x) . 0, then the point x is not a local maximizer.k

And only in the case where

↓f (x) 5 0;k [ 0 : `k

or

↑f (x) 5 0;k [ 0 : ` ,k

we are unable to make any conclusion whether the point x is an extremum point,
or not. The following examples demonstrate that in such cases any situation is
possible.

In the examples below X 5 R, r(x, y) 5 ux 2 yu, x 5 0 .0

EXAMPLE 1. Let

2x , x ± 0 ,
f(x) 5H1, x 5 0

It is clear that

↓ ↑ ↓ ↑f (x ) 5 21 , f (x ) 5 21 , f (x ) 5 f (x ) 5 2`;k [ 1 : ` .0 0 0 0 k 0 k 0

Thus, the sufficient condition for a maximum holds at the point x 5 0.0

EXAMPLE 2. Let

21 / ux ue , x ± 0 ,
f(x) 5H0 , x 5 0 .

It is easy to find that

↓ ↑f (x ) 5 f (x ) 5 0;k [ 0 : ` .k 0 k 0

This is just the case where we are unable to get any conclusion on the extremality
of the point x (though in fact this point is a minimizer).0

EXAMPLE 3. Let

21 / ux u
2e , x ± 0 ,

f(x) 5H0 , x 5 0 .

Like in Example 2, it is easy to find that

↓ ↑f (x ) 5 f (x ) 5 0;k [ 0 : ` .k 0 k 0

And again by means of Theorems 3.1 and 3.2 we are unable to make any
conclusion on the extremality of the point x (though in fact this point is a local0

maximizer).
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EXAMPLE 4. Let
21 / xe x . 0 ,

1 / xf(x) 5 2 e , x , 0 ,5
0 , x 5 0 .

We have
↓ ↑f (x ) 5 f (x ) 5 0;k [ 0 : ` .k 0 k 0

Like in Examples 2 and 3, by means of Theorems 3.1 and 3.2 we are unable to
make any conclusion on the extremality of the point x (though in fact this point is0

neither a local maximizer, nor a local minimizer).
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