Conditions for an Extremum in Metric Spaces*

V.F. DEMYANOV**
Applied Mathematics Department, St. Petersburg State University, St. Petersburg, Russia

(Received for publication May 2000)

Abstract

General necessary and sufficient conditions of the k-th order (where $k \geqslant 0$) for an extremum of an arbitrary function defined on an arbitrary metric space are stated. Examples illustrating the theory are described.

Key words: Metric space; Local (global) minimum and maximum; k-th order necessary optimality condition; k-th order sufficient condition; k-th order rate of steepest descent and ascent

1. Introduction

Let X be a metric space with the metric ρ and let us assume that a functional f is defined on X and takes values from $\overline{\mathbb{R}}=[-\infty,+\infty]$. Our aim is to describe k-th order necessary and sufficient conditions for a maximum and a minimum of f on X. It turns out that such conditions can be formulated in a very general form by means of the k-th order rates of steepest descent and ascent introduced in the paper. Being applied to specific spaces (normed spaces, for example) the obtained conditions generate, among others, some well-known optimality conditions (see, e.g., [1-6]).

In Section 2 the first-order conditions are proved. In Section 3 the k-th order conditions are described.

2. First-order optimality conditions

Let X be a metric space with the metric ρ and let us assume that a functional f is defined on X and takes values from $\overline{\mathbb{R}}=\mathbb{R} \cup\{+\infty,-\infty\}=[-\infty,+\infty]$.

Put

$$
\operatorname{dom} f=\{x \in X \mid f(x) \in \mathbb{R}\}
$$

and assume that

$$
\begin{equation*}
\operatorname{dom} f \neq \emptyset \tag{2.1}
\end{equation*}
$$

Let $x \in \operatorname{dom} f$. Denote

[^0]\[

$$
\begin{equation*}
f^{\downarrow}(x)=\liminf _{\substack{y \in X \\ y \rightarrow x}} \frac{f(y)-f(x)}{\rho(x, y)} \tag{2.2}
\end{equation*}
$$

\]

If there exists no sequence $\left\{y_{k}\right\}$, such that

$$
y_{k} \in X, y_{k} \neq x \forall k, \quad y_{k} \rightarrow x
$$

then by definition $f^{\downarrow}(x)=+\infty$. Since $x \in \operatorname{dom} f$, then the limit in (2.2) always exists though it may be equal to $+\infty$ or $-\infty$).

The quantity $f^{\downarrow}(x)$ is called the rate of steepest descent of the function f at the point x.
(2.2) implies the expansion

$$
f(y)=f(x)+\rho(x, y) f^{\downarrow}(x)+\underline{o}(\rho(x, y))
$$

where

$$
\begin{equation*}
\liminf _{y \rightarrow x} \frac{\underline{o}(\rho(x, y))}{\rho(x, y)}=0 \tag{2.3}
\end{equation*}
$$

Analogously, for $x \in \operatorname{dom} f$ one can define the quantity

$$
\begin{equation*}
f^{\uparrow}(x)=\limsup _{\substack{y \in X \\ y \rightarrow x}} \frac{f(y)-f(x)}{\rho(x, y)} \tag{2.4}
\end{equation*}
$$

If there exists no sequence $\left\{y_{k}\right\}$, such that

$$
y_{k} \in X, y_{k} \neq x \forall k, \quad y_{k} \rightarrow x,
$$

then by definition $f^{\uparrow}(x)=-\infty$. Since $x \in \operatorname{dom} f$, then the limit in (2.4) always exists though it may be equal to $+\infty$ or $-\infty$).
(2.4) implies the expansion

$$
f(y)=f(x)+\rho(x, y) f^{\uparrow}(x)+\bar{o}(\rho(x, y)),
$$

where

$$
\begin{equation*}
\limsup _{y \rightarrow x} \frac{\bar{o}(\rho(x, y))}{\rho(x, y)}=0 \tag{2.5}
\end{equation*}
$$

The quantity $f^{\uparrow}(x)$ is called the rate of steepest ascent of the function f at the point x.

Put

$$
f_{*}=\inf _{x \in X} f(x), \quad f^{*}=\sup _{x \in X} f(x) .
$$

It follows from (2.1) that

$$
f_{*}<+\infty, \quad f^{*}>-\infty .
$$

If for some point $x_{*} \in X$ it holds that $f\left(x_{*}\right)=f_{*}$, then the point x_{*} is called a
minimum point (or a global minimum point, or a global minimizer) of the function f on X. Of course, it may happen that such a point x_{*} doesn't exist.

Put

$$
A_{*}=\arg \min _{x \in X} f=\left\{x \in X \mid f(x)=f_{*}\right\} .
$$

If

$$
x_{0} \notin \operatorname{dom} f, \quad f\left(x_{0}\right)=-\infty,
$$

then

$$
f_{*}=f\left(x_{0}\right)=-\infty, \quad x_{0} \in A_{*} .
$$

If for points $x_{1} \in X$ and $x_{2} \in X$ it turns out that

$$
f\left(x_{1}\right)=-\infty, \quad f\left(x_{2}\right)=-\infty,
$$

then we shall assume that

$$
f\left(x_{1}\right)=f\left(x_{2}\right)=f_{*} .
$$

Analogously, if for some point $x^{*} \in X$ we have $f\left(x^{*}\right)=f^{*}$, then the point x^{*} is called a maximum point (or a global maximum point, or a global maximizer) of the function f on X. Of course, it may happen that such a point x^{*} doesn't exist.

Put

$$
A^{*}=\arg \max _{x \in X} f=\left\{x \in X \mid f(x)=f^{*}\right\} .
$$

If

$$
x_{0} \notin \operatorname{dom} f, \quad f\left(x_{0}\right)=+\infty,
$$

then

$$
f^{*}=f\left(x_{0}\right)=+\infty, \quad x_{0} \in A^{*}
$$

If for points $x_{1}, x_{2} \in X$ it turns out that

$$
f\left(x_{1}\right)=+\infty, \quad f\left(x_{2}\right)=+\infty,
$$

then we assume that $f\left(x_{1}\right)=f\left(x_{2}\right)=f^{*}$.
In other words, a point $x_{*} \in X$ is a global minimum point of f on X, if

$$
\begin{equation*}
f\left(x_{*} \leqslant f(x) \quad \forall x \in X\right. \tag{2.6}
\end{equation*}
$$

and a point $x^{*} \in X$ is a global maximum point of f on X, if

$$
\begin{equation*}
f\left(x^{*}\right) \geqslant f(x) \quad \forall x \in X . \tag{2.7}
\end{equation*}
$$

A point $x_{*} \in X$ is called a strict global minimum point or a strict global minimizer of the function f on X, if

$$
\begin{equation*}
f\left(x_{*}\right)<f(x) \quad \forall x \in X, \quad x \neq x_{*} . \tag{2.8}
\end{equation*}
$$

A point $x^{*} \in X$ is called a strict global maximum point or a strict global maximizer of the function f on X, if

$$
\begin{equation*}
f\left(x^{*}\right)>f(x) \quad \forall x \in X, \quad x \neq x^{*} . \tag{2.9}
\end{equation*}
$$

A point $x_{*} \in X$ is called a local minimum point or a local minimizer of f on X, if there exists a $\delta>0$, such that

$$
\begin{equation*}
f\left(x_{*}\right) \leqslant f(x) \quad \forall x \in X: \rho\left(x, x_{*}\right)<\delta . \tag{2.10}
\end{equation*}
$$

If $\delta=+\infty$ then the point x_{*} is a global minimum point. A point $x_{*} \in X$ is called a strict local minimum point or a strict local minimizer if there exists a $\delta>0$, such that

$$
\begin{equation*}
f\left(x_{*}\right)<f(x) \quad \forall x \in X: x \neq x_{*}, \quad \rho\left(x, x_{*}\right)<\delta . \tag{2.11}
\end{equation*}
$$

A point $x^{*} \in X$ is called a local maximum point or a local maximizer of f on X, if there exists a $\delta>0$, such that

$$
\begin{equation*}
f\left(x^{*}\right) \geqslant f(x) \quad \forall x \in X: \rho\left(x, x^{*}\right)<\delta . \tag{2.12}
\end{equation*}
$$

If $\delta=\infty$ then the point x^{*} is a global maximum point. A point $x^{*} \in X$ is called a strict local maximum point or a strict local maximizer if there exists a $\delta>0$, such that

$$
\begin{equation*}
f\left(x^{*}\right)>f(x) \quad \forall x \in X: x \neq x^{*}, \quad \rho\left(x, x^{*}\right)<\delta . \tag{2.13}
\end{equation*}
$$

If for some point $\bar{x} \in X$ we have $f(\bar{x})=+\infty$, then by definition \bar{x} is a global maximum point of the function f on X; and if $f(\bar{x})=-\infty$, then by definition \bar{x} is a global minimum point of f on X.

THEOREM 2.1. For a point $x_{*} \in \operatorname{dom} f$ to be a global or local minimizer of the function f on X it is necessary that

$$
\begin{equation*}
f^{\downarrow}\left(x_{*}\right) \geqslant 0 . \tag{2.14}
\end{equation*}
$$

If

$$
\begin{equation*}
f^{\downarrow}\left(x_{*}\right)>0, \tag{2.15}
\end{equation*}
$$

then the point x_{*} is a strict local minimizer of f on X.
Proof. Necessity follows directly from the definition. Indeed, let x_{*} be a local or global minimizer. Then (2.10) holds, therefore

$$
f^{\downarrow}\left(x_{*}\right)=\liminf _{\substack{x \in X \\ x \rightarrow x_{*}}} \frac{f(x)-f\left(x_{*}\right)}{\rho\left(x, x_{*}\right)} \geqslant 0 .
$$

Sufficiency. Let condition (2.15) be satisfied at the point x_{*}. We have to show that a $\delta>0$ exists such that (2.11) holds. Assume the contrary. Let us choose a sequence $\left\{\delta_{k}\right\}$ such that $\delta_{k} \downarrow 0$. By assumption, the point x_{*} is not a strict local minimizer, therefore there exists an $x_{k} \in X$, such that

$$
f\left(x_{k}\right) \leqslant f\left(x_{*}\right), \quad \rho\left(x_{k}, x_{*}\right) \leqslant \delta_{k} .
$$

Hence,

$$
f^{\downarrow}\left(x_{k}\right)=\liminf _{\substack{x \in X \\ x \rightarrow x_{*}}} \frac{f(x)-f\left(x_{*}\right)}{\rho\left(x, x_{*}\right)} \leqslant \liminf _{k \rightarrow \infty} \frac{f\left(x_{k}\right)-f\left(x_{*}\right)}{\rho\left(x_{k}, x_{*}\right)} \leqslant 0,
$$

which contradicts (2.15). The sufficiency is proved.
THEOREM 2.2. For a point $x^{*} \in \operatorname{dom} f$ to be a global or local maximizer of the function f on X, it is necessary that

$$
\begin{equation*}
f^{\uparrow}\left(x^{*}\right) \leqslant 0 . \tag{2.16}
\end{equation*}
$$

If

$$
\begin{equation*}
f^{\uparrow}\left(x^{*}\right)<0 . \tag{2.17}
\end{equation*}
$$

then the point x^{*} is a strict local maximizer of f on X.
Proof is similar to that of Theorem 2.1.
DEFINITION 2.1. A point $x_{*} \in X$, satisfying condition (2.14), is called an infstationary point of the function f on X. A point $x^{*} \in X$, satisfying condition (2.16), is called a sup-stationary point of f on X.

DEFINITION 2.2 A sequence $\left\{x_{k}\right\}$, such that

$$
x_{k} \in X, \quad f\left(x_{k}\right) \rightarrow f_{*}=\inf _{x \in X} f(x),
$$

is called a minimizing sequence (for the function f on X).
A sequence $\left\{x_{k}\right\}$, such that

$$
x_{k} \in X, \quad f\left(x_{k}\right) \rightarrow f^{*}=\sup _{x \in X} f(x)
$$

is called a maximizing sequence (for the function f on X).

3. \boldsymbol{k}-th order conditions

Let $x \in \operatorname{dom} f, k \in 0: \infty$. Put

$$
\begin{equation*}
f_{k}^{\downarrow}(x)=\liminf _{\substack{y \in X \\ y \rightarrow x}} \frac{f(y)-f(x)}{\rho^{k}(x, y)} \tag{3.1}
\end{equation*}
$$

The quantity $f_{k}^{\downarrow}(x)$ is called the k-th order rate of steepest descent.
Analogously, for $x \in \operatorname{dom} f$ we define the quantity

$$
\begin{equation*}
f_{k}^{\uparrow}(x)=\limsup _{\substack{y \in X \\ y \rightarrow x}} \frac{f(y)-f(x)}{\rho^{k}(x, y)} . \tag{3.2}
\end{equation*}
$$

The quantity $f_{k}^{\uparrow}(x)$, is called the k-th order rate of steepest ascent. It is clear, that

$$
f^{\uparrow}(x)=f_{1}^{\downarrow}(x), \quad f^{\uparrow}(x)=f_{1}^{\uparrow}(x)
$$

If $f_{k}^{\downarrow}(x) \in \mathbb{R}$ (i.e. it is finite), then (3.1) yields the expansion

$$
\begin{equation*}
f(y)=f(x)+\rho^{k}(x, y) f^{\perp}(x)+\underline{a}(\rho(x, y)), \tag{3.3}
\end{equation*}
$$

where

$$
\begin{equation*}
\liminf _{y \rightarrow x} \frac{\bar{a}(\rho(x, y))}{\rho^{k}(x, y)}=0 \tag{3.4}
\end{equation*}
$$

Analogously, if $f_{k}^{\downarrow}(x) \in \mathbb{R}$, then (3.2) implies the expansion

$$
\begin{equation*}
f(y)=f(x)+\rho^{k}(x, y) f^{\uparrow}(x)+\bar{a}(\rho(x, y)), \tag{3.5}
\end{equation*}
$$

where

$$
\begin{equation*}
\limsup _{y \rightarrow x} \frac{\bar{a}(\rho(x, y))}{\rho^{k}(x, y)}=0 . \tag{3.6}
\end{equation*}
$$

The following conditions for an extremum hold.
THEOREM 3.1. For a point $x_{*} \in \operatorname{dom} f$ to be a global or local minimizer of the function f on X it is necessary that

$$
\begin{equation*}
f_{k}^{\perp}\left(x_{*}\right) \geqslant 0 \forall k \in 0: \infty . \tag{3.7}
\end{equation*}
$$

If for some $k \in 0: \infty$ it turns out that

$$
\begin{equation*}
f_{k}^{\perp}\left(x_{*}\right)>0, \tag{3.8}
\end{equation*}
$$

then x_{*} is a strict local minimizer of f on X.
Proof is similar to that of Theorem 2.1.
THEOREM 3.2. For a point $x^{*} \in \operatorname{dom} f$ to be a global or local maximizer of the function f on X it is necessary that

$$
\begin{equation*}
f_{k}^{\uparrow}\left(x^{*}\right) \leqslant 0 \forall k \in 0: \infty . \tag{3.9}
\end{equation*}
$$

If for some $k \in 0: \infty$ it turns out that

$$
\begin{equation*}
f_{k}^{\uparrow}\left(x^{*}\right)<0, \tag{3.10}
\end{equation*}
$$

then x^{*} is a strict local maximizer of f on X.

Proof is similar to that of Theorem 2.2.

DEFINITION 3.1. We say that a point x_{0} is an inf-stationary point of the k-th order of the function f, if

$$
f_{i}^{\downarrow}\left(x_{0}\right)=0 \forall i \in 0: k
$$

A function f is called lower semicontinuous at a point x_{0}, if

$$
\liminf _{x \rightarrow x_{0}} f(x)=f\left(x_{0}\right) .
$$

Clearly, if a function f is lower semicontinuous at a point x_{0}, then the point x_{0} is an inf-stationary point of the zero order.

DEFINITION 3.2. We say that a point x_{0} is a sup-stationary point of the k-th order of the function f, if

$$
f_{i}^{\uparrow}\left(x_{0}\right)=0 \forall i \in 0: k .
$$

A function f is called upper semicontinuous at a point x_{0}, if

$$
\limsup _{x \rightarrow x_{0}} f(x)=f\left(x_{0}\right) .
$$

Clearly, if a function f is upper semicontinuous at a point x_{0}, then the point x_{0} is a sup-stationary point of the zero order.

REMARK 3.1. It is not difficult to see that the following property holds.
For a function f to be continuous at a point x_{0}, it is necessary and sufficient that

$$
f_{0}^{\downarrow}\left(x_{0}\right)=f_{0}^{\uparrow}\left(x_{0}\right)=0 .
$$

In other words, a function f is continuous at a point x_{0} if and only if it is both upper and lower semicontinuous at this point.

REMARK 3.2. Theorems 3.1 and 3.2 imply the following property: At any point $x \in \operatorname{dom} f$ either

$$
f_{k}^{\downarrow}(x) \geqslant 0 \forall k \in 0: \infty,
$$

or

$$
f_{k}^{\downarrow}(x) \leqslant 0 \forall k \in 0: \infty .
$$

If for some $k \in 0: \infty$ we have $f_{k}^{\downarrow}(x)>0$, then the point x is a strict local minimizer. If for some $k \in 0: \infty$ it turns out that $f_{k}^{\downarrow}(x)<0$, then the point x is not a local minimizer.

Analogously, at any point $x \in \operatorname{dom} f$ either

$$
f_{k}^{\uparrow}(x) \leqslant 0 \forall k \in 0: \infty,
$$

or

$$
f_{k}^{\uparrow}(x) \geqslant 0 \forall \in 0: \infty
$$

If for some $k \in 0: \infty$ it turns out that $f_{k}^{\uparrow}(x)<0$, then the point x is a strict local maximizer.

If for some $k \in 0: \infty$ we have $f_{k}^{\uparrow}(x)>0$, then the point x is not a local maximizer. And only in the case where

$$
f_{k}^{\perp}(x)=0 \forall k \in 0: \infty
$$

or

$$
f_{k}^{\uparrow}(x)=0 \forall k \in 0: \infty,
$$

we are unable to make any conclusion whether the point x is an extremum point, or not. The following examples demonstrate that in such cases any situation is possible.

In the examples below $X=\mathbb{R}, \rho(x, y)=|x-y|, x_{0}=0$.

EXAMPLE 1. Let

$$
f(x)= \begin{cases}x^{2}, & x \neq 0 \\ 1, & x=0\end{cases}
$$

It is clear that

$$
f_{0}^{\downarrow}\left(x_{0}\right)=-1, \quad f_{0}^{\uparrow}\left(x_{0}\right)=-1, \quad f_{k}^{\downarrow}\left(x_{0}\right)=f_{k}^{\uparrow}\left(x_{0}\right)=-\infty \forall k \in 1: \infty
$$

Thus, the sufficient condition for a maximum holds at the point $x_{0}=0$.

EXAMPLE 2. Let

$$
f(x)= \begin{cases}e^{-1 /|x|}, & x \neq 0 \\ 0, & x=0\end{cases}
$$

It is easy to find that

$$
f_{k}^{\downarrow}\left(x_{0}\right)=f_{k}^{\uparrow}\left(x_{0}\right)=0 \forall k \in 0: \infty .
$$

This is just the case where we are unable to get any conclusion on the extremality of the point x_{0} (though in fact this point is a minimizer).

EXAMPLE 3. Let

$$
f(x)= \begin{cases}-e^{-1 /|x|}, & x \neq 0 \\ 0, & x=0\end{cases}
$$

Like in Example 2, it is easy to find that

$$
f_{k}^{\downarrow}\left(x_{0}\right)=f_{k}^{\uparrow}\left(x_{0}\right)=0 \forall k \in 0: \infty
$$

And again by means of Theorems 3.1 and 3.2 we are unable to make any conclusion on the extremality of the point x_{0} (though in fact this point is a local maximizer).

EXAMPLE 4. Let

$$
f(x)= \begin{cases}e^{-1 / x} & x>0 \\ -e^{1 / x}, & x<0 \\ 0, & x=0\end{cases}
$$

We have

$$
f_{k}^{\downarrow}\left(x_{0}\right)=f_{k}^{\uparrow}\left(x_{0}\right)=0 \forall k \in 0: \infty
$$

Like in Examples 2 and 3, by means of Theorems 3.1 and 3.2 we are unable to make any conclusion on the extremality of the point x_{0} (though in fact this point is neither a local maximizer, nor a local minimizer).

References

1. Demyanov, V.F. and Rubinov, A.M. (1995), Constructive Nonsmooth Analysis, Frankfurt au Main, Verlag Peter Lang.
2. Girsanov, I.V. (1970), Lectures on Mathematical Theory of Extremal Problems, Moscow, Moscow University Press (in Russian).
3. Hiriart-Urruty, J.-B. and Lemarechal, C. (1993), Convex Analysis and Minimization Algorithms, Parts I and II, Springer, Berlin et al.
4. Ioffe, A.D. and Tikhomirov, V.M. (1974), Theory of Extremal Problems, Moscow: Nauka. (English transl. by North-Holland, 1979).
5. Pallaschke, D. and Rolewicz, S. (1997), Foundations of Mathematical Optimization, Kluwer Academic Publishers, Dordrecht.
6. Pschenichny, B.N. (1982), Necessary conditions for an extremum. 2nd edn. Moscow: Nauka. (English translation of the 1st ed. by Marsel Dekker, New York, 1971).

[^0]: * This paper is dedicated to the memory of Professor P.D. Panagiotopoulos.
 ** The research was supported by the Russian Foundation for Fundamental Studies (grant RFFI No. 97-01-00499).

